If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+56t=25
We move all terms to the left:
-16t^2+56t-(25)=0
a = -16; b = 56; c = -25;
Δ = b2-4ac
Δ = 562-4·(-16)·(-25)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-16\sqrt{6}}{2*-16}=\frac{-56-16\sqrt{6}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+16\sqrt{6}}{2*-16}=\frac{-56+16\sqrt{6}}{-32} $
| -21-20x=180 | | )−3=7(y−79 | | (44+104)+(18+7x)=180 | | 3.5^2+12^2=y^2 | | -4a+6=18 | | -2s-3=-11 | | 19q-9q=20 | | 10x+5=10x+2*7 | | Kx1/8=13/4 | | m+2+3=16/2 | | 2x+4=5-3 | | -9-12-17x-3x=180 | | 48+x+x–44=180 | | 56=n/7 | | 8x+9=0x+5 | | -12+4n=8 | | 48+x+x–44= | | -2(x+12)=-10 | | 4(x-2)+x=+6x | | 2x+2x+1x=13 | | 625=h-52.9 | | 8=4c+16 | | 10(8+4/5b)=10(9/10b) | | (64+85)+(4x+27)=180 | | 36^2x=6^x-3 | | 7x-3x+1=3+2*3x | | 250+25x=100+50 | | x-46=66 | | √x+1/6=(−1)^−2+0,5*(3−√16) | | 36=5v-14 | | -6r+13=55 | | x/2+20=x+9 |